Appendix to Chapter 2

An infinite series can only be differentiated term-by-term if the resulting
series converges uniformly. Thus the derivation of

Zzlogp

r>1

given in the notes for o > 1 can only be justified by the following result.

Example 2.26 The series

ACOE
converges uniformly for o > 1+ 6 for any 6 > 0.

Proof

Thus

This resulting sum over all integers has been shown to converge uniformly
for o0 > 1+ 0 for any § > 0 in the Background: Complex Analysis II notes.
We repeat it here: Let M, = (logn)/n'*?. Then

logn _ logn - logn

ne - n1+6

: = M,.
n

By looking for a turning point for (log z)/x'*° we know that (logn)/n'*°
is decreasing for n > ng, where ny is the least integer greater than exp (1/(1 + 9)).

For such n | " logt
ogn og
nl+o =< / 11+6 s dt

Hence

* logt
< [

n>ng no—

a convergent integral since § > 0. (Integration by parts will show this.)
Hence ) M, and thus }_ -, M, converge. The result then follows from

n>ng
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the Weierstrass M-test. [ |

Proofs of Lemma 2.18 and Corollary 2.21.
Lemma 2.18 Chebyshev’s inequality For all € > 0
(log2 —e)x < 0(z) < (2log2+¢)x

for all x > z3(g).
Proof Let ¢ > 0 be given. Lemma 2.17 means that there exists a function
E(x) :(z) = 0(z) + E(x) and |E(z)| < Cz'/? for some constant C' > 0. Yet
Ca'/? < ex/2 for z sufficiently large, i.e. x > x5 (¢). Thus, for such z,
U(z) —ex/2 < O(x) < Y(x) +ex/2.
Next apply Corollary 2.16 with /2 in place of ¢, to get
(log2 —¢/2)x —ex/2 < O(x) < (2log2+¢/2)x + cx/2,

valid for x > max (21 (¢/2), z2 (€)). |

Corollary 2.21 Chebyshev’s inequality For all € > 0

(log2 —¢) <7r(x)<(210g2+6)1x

log ogx

for all x > x4 (e).

Proof Let € > 0 be given. Theorem 2.20 means that there exists a function
E(x) : m(z) = 0(x)/log x + E(x) where |E(z)| < Cx/log® x for some constant
C > 0. Yet C/logz < ¢/2 for z sufficiently large, i.e. > x5 (¢). Thus, for
such z,

O(x) +ex/2

< <
<m(z) < log

Next apply Lemma 2.18 with £/2 in place of &, to get(log2 — &)z <
O(z) < (2log2+¢)x

(log2 —¢/2)x — ex/2 < () < (2log2 +¢/2)x +ex/2
log x - - log x ’
valid for x > max (x5 (¢/2), x5 (¢)). [
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Inequalities between =(x) and 6(z).

In Theorem 2.20 we gave an asymptotic relation between 7(z) and 0(x).
We can, instead give a simple inequality,

O(x) = Zlogp < Zlogx = m(x)log x.

p<z p<z

What is not simple is a lower bound on 6 in terms of .

Lemma 2.27 Forall0<a <1

1
_ a <
() 7l < o

(0(z) — 0(z)). (25)
Proof Given 0 < a < 1, we have

m(x) — m(z®) = Z L.

e <p<zx

For the primes p counted in this sum we have z® < p which can be

rewritten as
log p

1< .
log x

Thus

1 1
Z L = Z looggxpa :logx"‘ Z log p

r*<p<z r*<p<z r*<p<z

= L (o) - 6.

log ¢

These inequalities can be used to deduce Chebyshev’s inequality for =
from Chebyshev’s inequality for 6. So, start from the result that for all ¢ > 0

(log2 —e)x < O(x) < (2log2 +¢)x (26)

for all x > x3 (). Then from 0(z) < m(z)logz we get the lower bound on

m(x):

(log2 —¢) < m(x)

log
for all x > z3 (g).
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For the upper bound we start from (25) with « to be chosen. Simplify

slightly, so
1

log x

m(x) < m(x®) +

0(x) .

Then use the trivial 7(z) < z along with the upper bound in (26), though
with € replace by /2, so

(2log2+¢/2)x
alog x '

(z) < 2° +

for x > x5 (¢/2). Now choose o < 1 sufficiently close to 1 that

2log?2 2
Rlog2+e/2) _ 5000, 3
o 4
Le.
2log2+¢/2 . 5
a=—"""=1—-——
2log2 + 3¢ /4 8log2 + 3¢

Then for such o we have

3\ =
< z” 2log2 + — .
m(z) <z +( 0g2+ 4)log$

Our choice of « is still < 1 so

T

r* <

I

=~ M

log x

for = sufficiently large, i.e. > 24 (¢). Combining we find that

m(z) < (2log2 +¢) lozx

for x > max (x5 (€/2), x¢ (€)).
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